

(12) PATENT APPLICATION PUBLICATION

(19) INDIA

(22) Date of filing of Application :15/07/2025

(21) Application No.202541067601 A

(43) Publication Date : 25/07/2025

(54) Title of the invention : Smart Thermal Insulation System for Energy-Efficient Buildings with Automated Control and Monitoring

(51) International classification :G05B0015020000, G06N0020000000, F24F0011630000, F24F0011460000, F24F0011300000

(86) International Application No :NA

Filing Date :NA

(87) International Publication No : NA

(61) Patent of Addition to Application Number :NA

Filing Date :NA

(62) Divisional to Application Number :NA

Filing Date :NA

(71)Name of Applicant :

1)G ASHWIN PRABHU

Address of Applicant :No. 11, Thirumagal Nagar, II Street, Karthick Avenue, Flat No. F1, First Floor, "Sai Guru Apartments", Chitlapakkam -----

2)Mr. A. Sargunaraj

3)Mr. S. Sathishkumar

4)Dr. S. Subbaraj

5)Dr. M. Venkatesan

6)Dr. V. Venkata Ramana

7)Dr. G. Narendra Santosh Kumar

8)Dr. Jayashree Deka

9)Mr. Rajeshwaran R

10)Dr. V. Gopal

11)Mr. G. M. Pradeep

Name of Applicant : NA

Address of Applicant : NA

(72)Name of Inventor :

1)Mr. A. Sargunaraj

Address of Applicant :Assistant Professor, Department of Mechanical Engineering, Jerusalem College of Engineering, Velachery Main Road, Narayananapuram, Pallikaranai, Chennai - 600100, Tamil Nadu, India -----

2)Mr. S. Sathishkumar

Address of Applicant :Assistant Professor, Department of Mechanical Engineering, Shree Venkateswara Hi-Tech Engineering College, Othakuthirai, Gobichettipalayam, Erode 638455, Tamil Nadu, India -----

3)Dr. S. Subbaraj

Address of Applicant :Professor and Principal, Department of Mechanical Engineering, T J Institute of Technology, Rajiv Gandhi Salai (Old Mahabalipuram Road), Karapakkam, Chennai - 600097, Tamil Nadu, India -----

4)Dr. M. Venkatesan

Address of Applicant :Professor & Principal, Department of Mechanical Engineering, Thangavelu Engineering College, Rajiv Gandhi Salai (Old Mahabalipuram Road), Karapakkam, Chennai - 600097, Tamil Nadu, India -----

5)Dr. V. Venkata Ramana

Address of Applicant :Professor, Department of Mechanical Engineering, Ballari Institute of Technology and Management, Ballari, jnana gangotri campus, Hospet road, allipur, Bellary 583104, Ballari district, Karnataka, India -----

6)Dr. G. Narendra Santosh Kumar

Address of Applicant :Associate Professor, Department of Mechanical Engineering, RK College of Engineering, Kethanakonda, Vijayawada, Amaravati, Andhra Pradesh 521456, India -----

7)Dr. Jayashree Deka

Address of Applicant :Assistant Professor, Department of Mechatronics Engineering, Marathwada Mitra Mandal's Institute of Technology, Pune 411047, Maharashtra, India -----

8)Mr. Rajeshwaran R

Address of Applicant :Assistant Professor, Department of Civil Engineering, St. Peter's Institute of Higher Education and Research, Chennai 600054, Tamil Nadu, India -----

9)Dr. V. Gopal

Address of Applicant :Assistant Professor, Department of Mechanical Engineering, KCG College of Technology, Rajiv Gandhi Salai, Karapakkam, Chennai - 600097, Tamil Nadu, India -----

10)Mr. G. M. Pradeep

Address of Applicant :Assistant professor, Department of Mechatronics Engineering, Velammal Institute of Technology, Chennai - Kolkatta Highway, Panchetti, Tiruvalur District 601204, Tamil Nadu, India -----

(57) Abstract :

The global push for sustainable infrastructure has heightened the need for intelligent thermal management in buildings, which account for nearly 40% of global energy consumption, with HVAC systems alone responsible for over 50% of that. This paper introduces a Smart Thermal Insulation System (STIS) enhanced with Artificial Intelligence (AI) and Machine Learning (ML) algorithms for automated control and monitoring of indoor environments. The proposed system integrates IoT-enabled sensors, adaptive insulation materials (e.g., phase change materials with thermal conductivity of 0.18 W/m·K, and silica aerogels with 0.013 W/m·K), and AI-driven control logic to optimize energy usage while maintaining occupant comfort. STIS utilizes a network of temperature, humidity, CO₂, and occupancy sensors to collect real-time data. Machine learning models such as Random Forest for anomaly detection and Reinforcement Learning (Q-learning) for energy optimization are employed to predict and adjust insulation behavior. The system was deployed in two different test environments: a traditional building (control site) and a smart STIS-enabled building (test site), both located in Chennai, India. Experimental results over a 90-day summer monitoring period showed that the STIS-enabled building reduced HVAC energy consumption by 38.7%, compared to the traditional counterpart. Internal temperatures were stabilized within $\pm 1.5^{\circ}\text{C}$ of the target range (23–25°C), despite external temperature fluctuations between 31°C and 43°C. Furthermore, predictive maintenance alerts reduced system downtime by 22%, enhancing operational continuity. Compared to conventional passive insulation or programmable thermostats, STIS adapts to real-time conditions, forecasts, and occupancy patterns, offering greater efficiency and user autonomy. For instance, during peak occupancy, the system automatically pre-cooled zones with high footfall, avoiding unnecessary energy spikes. In conclusion, STIS demonstrates a practical, AI-driven pathway for reducing building energy use, cutting costs by 20–25% annually, and supporting smart city goals through intelligent automation and sustainability.

No. of Pages : 15 No. of Claims : 10