

(12) PATENT APPLICATION PUBLICATION
(19) INDIA
(22) Date of filing of Application :28/08/2025

(21) Application No.202541081852 A
(43) Publication Date : 05/09/2025

(54) Title of the invention : Electrochemical Process for Recyeling Lithium from Battery Waste

(51) International classification :H01M0010540000, C22B007000000, H01M0010052500,
C22B0026120000, H01M0010056500
(86) International Application No :NA
Filing Date :NA
(87) International Publication No : NA
(61) Patent of Addition to Application Number :NA
Filing Date :NA
(62) Divisional to Application Number :NA
Filing Date :NA

(71)Name of Applicant :
1)Dr. D. Sathy
Address of Applicant :Assistant Professor, Department of Chemistry, SNS College of Technology, SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
2)Dr. D. Premkumar
3)Dr. D. Sivasankar
4)Mr. R. P. Elvin
5)Mr. V. Gopi
6)Mr.M. Anish John
7)Mr.S. Bhargav
8)Ms.Sona Anna Mathew
9)Ms.K. S. Surya
10)Mr.A. Kishore Sai
Name of Applicant : NA
Address of Applicant : NA
(72)Name of Inventor :
1)Dr. D. Sathy
Address of Applicant :Assistant Professor, Department of Chemistry, SNS College of Technology, SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
2)Dr. D. Premkumar
Address of Applicant :Assistant Professor, Department of Mechanical Engineering, Easwari Engineering College, Bharathi salai, Ramapuram, Chennai- 600089, Tamil Nadu, India Chennai -----
3)Dr. D. Sivasankar
Address of Applicant :Assistant Professor, Department of Mechanical Engineering, Velammal Engineering College, Surapet, Ambattur-Redhills Road, Chennai- 600066 Tamil Nadu, India Chennai -----
4)Mr. R. P. Elvin
Address of Applicant :Assistant Professor, Department of Mechanical Engineering, Velammal Engineering College, Surapet, Ambattur-Redhills Road, Chennai- 600066 Tamil Nadu, India Chennai -----
5)Mr. V. Gopi
Address of Applicant :Assistant Professor, Department of Mechatronics Engineering, Velammal Institute of Technology, Velammal Knowledge Park, Chennai -Kolkata Highway, Panchetti post, Chennai 601204 Tamil Nadu, India Chennai -----
6)Mr.M. Anish John
Address of Applicant :Student, III Year, Department of Information Technology SNS College of Engineering SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
7)Mr.S. Bhargav
Address of Applicant :Student, III Year, Department of Information Technology SNS College of Engineering SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
8)Ms.Sona Anna Mathew
Address of Applicant :Student, III Year, Department of Information Technology SNS College of Engineering SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
9)Ms.K. S. Surya
Address of Applicant :Student, III Year, Department of Information Technology SNS College of Engineering SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----
10)Mr.A. Kishore Sai
Address of Applicant :Student, III Year, Department of Information Technology SNS College of Engineering SNS Kalvi Nagar, Sathy Main Road, Kurumbapalayam, Coimbatore- 641107, Tamil Nadu, India Coimbatore -----

(57) Abstract :
This development introduces an electrochemical process designed for the efficient recycling of lithium from spent battery waste, aiming to address the growing challenge of sustainable resource management in the energy storage industry. Conventional recycling methods, such as pyrometallurgy and hydrometallurgy, often involve high energy consumption, complex chemical treatments, and environmental hazards. Our process overcomes these drawbacks by employing a cost-effective electrochemical technique that selectively extracts lithium ions from waste streams while minimizing secondary pollution. The system incorporates advanced electrode materials and optimized electrolytes to enhance recovery efficiency, reduce operational costs, and ensure high purity of the recovered lithium. With a modular and scalable design, the process can be adapted to various battery chemistries, including lithium-ion and lithium-polymer batteries. Early experimental results indicate that this method achieves higher recovery rates compared to traditional approaches, with significant reductions in chemical waste generation. This project contributes to the circular economy by promoting the reuse of critical raw materials, supporting greener energy technologies, and providing a sustainable model for large-scale battery recycling.

No. of Pages : 8 No. of Claims : 1